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An energy minimization formulation of electrostatics that allows computation of the electrostatic energy and
forces to any desired accuracy in a system with arbitrary dielectric properties is presented. An integral equation
for the scalar charge density is derived from an energy functional of the polarization vector field. This energy
functional represents the true energy of the system even in nonequilibrium states. Arbitrary accuracy is
achieved by solving the integral equation for the charge density via a series expansion in terms of the
equation’s kernel, which depends only on the geometry of the dielectrics. The streamlined formalism operates
with volume charge distributions only, not resorting to introducing surface charges by hand. Therefore, it can
be applied to any spatial variation of the dielectric susceptibility, which is of particular importance in appli-
cations to biomolecular systems. The simplicity of application of the formalism to real problems is shown with
analytical and numerical examples.
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I. INTRODUCTION

Molecular dynamics �MD� simulations of solute-solvent
systems in chemistry and biology require accurate computa-
tion of electrostatic forces in order to obtain meaningful re-
sults. For practical purposes, computational efficiency is also
essential, and various formulations exist that strive to
achieve a balance between these two requirements. The ex-
plicit solvent methods simulate behavior of each single sol-
vent molecule which may be prohibitively expensive for a
system of reasonable dimensions. In addition to having high
computational costs, explicit solvent methods are usually tai-
lored for reproducing one of the many physical properties of
the solvent and therefore may not be well suited for a general
description of solute-solvent systems �see �1–3� for reviews
and performance analyses�.

The alternative approach is to treat the solvent as a dielec-
tric continuum and the solute as a different dielectric object
in the solvent. The dielectric properties of the solvent and the
solute usually serve as parameters of the model. In the litera-
ture this scheme is known as the implicit or continuum sol-
vent method �for reviews see �4–8��. Computations based on
these methods are inherently faster while comparable in ac-
curacy with those using explicit methods, at least in the situ-
ations when interactions between solute and solvent mol-
ecules can be neglected. For reasons of computational
efficiency, many of the implemented implicit solvent meth-
ods make use of assumptions which prevent improvement in
accuracy even as computational resources increase. The so-
called generalized Born model is a good example of such
uncontrolled approximations �see �9� for a discussion�.

To achieve controllable accuracy, we have recently pro-
posed a scheme �9� based on determining surface charges

satisfying the displacement field boundary condition. With
this scheme, one can achieve any level of accuracy permitted
by the available computing power, while remaining compu-
tationally more efficient than explicit solvent methods. The
main idea is to treat the induced surface charges at the
boundaries as the variables to be solved for. This makes the
potential, expressed directly in terms of the induced surface
charge density, continuous at the boundary. Therefore, only
the displacement field boundary condition remains, and it
leads to a set of algebraic equations for the surface charge
densities. The potential is obtained at no additional cost.

One of the seeming oversimplifications in the implicit sol-
vent methods is the assumption of a sharp boundary between
the solute and solvent. It is known, for example, that the
solute �e.g., proteins� may strongly interact with the sur-
rounding solvent molecules producing the so-called hydra-
tion layer�s� �10�. To determine electrostatic forces acting on
a protein coated with such hydration layers, one needs to find
induced charges in a spatially varying dielectric medium. In
this paper we develop a rigorous framework, based on func-
tional minimization, for handling spatially varying dielec-
trics.

Functional variation is a powerful approach in modern
physics. Despite common use in quantum electrodynamics,
variational techniques in classical electrostatics are relatively
rare and focus mainly on boundary value problems for linear
dielectrics �11�. It has long been a textbook fact that the true
electrostatic potential minimizes the system’s energy for a
given configuration of charges �12�. A suitable energy func-
tional can be constructed in general for any system of con-
tinuous media including systems with inhomogeneous and
nonlinear dielectric properties. For instance, free energy
functionals became an important tool in the description of
electrolyte solutions within the mean-field �Poisson-
Boltzmann� approach �see a recent paper �13� and references
therein�.

From our viewpoint the electrostatic potential is not the
best choice for a minimization variable as it contains infor-
mation about both the cause and effect, i.e., the source and
induced charge densities. Moreover, constitutive relations
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must be assumed �as in �14��. Finally, this approach depends
on prior knowledge of the Green’s function with boundary
conditions suitable for the given problem. In contrast, we use
the polarization as the fundamental function as was proposed
by Marcus over fifty years ago �15�, albeit with a different
functional. The constitutive relations are then obtained as a
result of minimization of the energy functional. The only
boundary condition needed is that the potential goes to zero
sufficiently rapidly �like inverse of the distance� at large dis-
tances.

In Marcus’s formulation �15�, the electric field and elec-
tric polarization were strongly motivated as the vectors de-
fining the electric state of the system. This formulation was
aimed at the processes �charge transfer chemical reactions�
which happen on a much shorter time scale than the molecu-
lar rearrangement in response to the changing electric field.
Marcus attempted to deal with this problem by dividing the
polarization into a fast reacting part that is proportional to
the local electric field and slowly reacting part that is not a
function of the local electric field. As a result, the free energy
functional derived by Marcus contains several electric fields
and polarizations of various origins.1

A physically sound free energy functional was proposed
by Felderhof �16� in the context of a discussion of thermal
fluctuations of the polarization and magnetization in dielec-
tric magnetic media. However, a free energy of this type
seems not to have been adopted for calculation of electro-
static fields until recently. An example of numerical imple-
mentation using Felderhof’s scheme can be found in �17�.
There, the polarization vector field was expanded in a plane-
wave basis set. The energy functional is then an ordinary
function of the expansion coefficients which, in turn, become
the variational parameters of a standard multidimensional
optimization problem. Fast Fourier transforms were used to
go from the real space to the reciprocal space representa-
tions.

An approach close to Felderhof’s scheme was also taken
in �18� where a thermodynamic functional was constructed
with the polarization as the independent function. However,
the techniques used there are suitable for systems with sharp
boundaries only �the susceptibility is not considered to be a
function of coordinates, but is rather treated as a piecewise
constant�.

In this paper we construct an energy minimization scheme
suitable for a rigorous treatment of systems with spatially
varying dielectric functions, be they linear or nonlinear. In
the case of linear dielectrics, our functional is equivalent to
that proposed by Felderhof �16�. In Sec. II we give the de-
tails of the formulation and describe a systematic protocol
for obtaining the total charge density. To show the versatility

of the scheme we apply it in Sec. III to systems with sharp
boundaries for which the exact solutions �or the exact equa-
tions governing the exact solutions� are known. In Sec. IV
we present numerical results for the case of two interacting
dielectric charged spheres �solutes� placed in a dielectric sol-
vent. We discuss the differences in force and energy between
the situations with sharp and smooth boundaries. Finally we
conclude with a discussion assessing the usefulness of the
method. Electrostatic CGS units are used throughout.

II. FUNDAMENTAL FORMULATION

Polarization is the response of a dielectric medium to an
applied electric field. The phenomenon is usually visualized
as the appearance of an induced dipole moment due to a
small shift in the relative positions of the positive and nega-
tive charge centers at the atomic scale �19�. The shift may be
either translational or rotational or both, depending on the
quantum mechanical and electromagnetic interactions at the
atomic level. The applied electric fields must be weak
enough not to split the atoms or molecules into their con-
stituents. The system is in a state of equilibrium under the
external electromagnetic and the intrinsic restoring forces.

Quantitatively, polarization P�r� is the density of induced
dipole moment at location r. This density in classical elec-
trodynamics is defined through averaging of dipole moments
of constituent atoms/molecules in a small volume centered
around r. The amount of polarization depends on the applied
force and the susceptibility of the medium to such forces.
Determination of the susceptibility of the medium �or rather
the intrinsic restoring force in the medium� is the subject of
quantum mechanics rather than classical electrodynamics.
Polarization is thus a classical/macroscopic variable summa-
rizing quantum mechanical effects at the atomic/microscopic
level. Therefore, we choose the polarization vector field P�r�
and electric field E�r�, in contrast to the more commonly
used pair E�r� and D�r�, as our fundamental variables. This
choice provides a simpler connection to the parameters de-
termined in microscopic physics.

We express the energy as a functional U�P�

U�P� = UC�P� + W�P� , �1�

where UC�P� is the electrostatic energy of interaction of all
charges present in the system and W�P� is the energy re-
quired to create the given polarization vector field P�r�.

From simple considerations it can be shown �19,20� that
the variation of polarization in the vicinity of a point is
equivalent to the presence of an induced charge density
�i�r�=−� ·P�r�. Therefore, the total charge density �t�r� in
the medium is a sum of the free charge density � f�r� and
�i�r�:

�t�r� = � f�r� + �i�r� . �2�

Then2

1If there is a true separation of time scales between various por-
tions of the electrical response, these excess fields should be elimi-
nated by a proper classification of the charges in the system:
charges that respond rapidly and whose redistribution is a function
of the local electric field contribute to the polarization, while
charges that respond slowly are part of the so-called free charge
distribution. However, if one were allowed to combine the induced
charge due to fast-responding polarization with the frozen free
charges, Marcus’s functional becomes identical to ours.

2When there is no possibility of confusion, we do not specify the
variable for the operator �; otherwise, we indicate the variable by a
subscript.
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UC�P� =
1

2
� �� f�r� − � · P�r��

�
1

�r − r��
�� f�r�� − � · P�r���drdr�. �3�

Note first that we do not include any separate term for in-
duced surface charges as was done in some of the earlier
formulations of functional minimization �15,18�. The volume
charge density is the most general form of charge density
possible. Second, Eq. �3� is the Coulomb energy in vacuum
and hence quite fundamental as opposed to the form with the
dielectric constant of the material in the denominator used in
some of the earlier works �18�.

The work functional W�P� should contain the intrinsic
self-interaction of the polarization vector field. Here we con-
sider only local contact terms for the intrinsic interactions.
Noting that the energy functional is a scalar and assuming
P↔−P symmetry, one can write the general work functional
W�P� as a polynomial expansion in even powers of P �or the
components Pi�. Thus we may write

W�P� =
1

2
� �Pi� 1

��r�
	

ij
Pj + PiPj� 1

��r�
	

ijkl
PkPl + ¯
dr ,

�4�

where the interaction tensors 1 /�, 1 /�, etc. describe the lin-
ear and nonlinear dielectric properties of the media, isotropic
or anisotropic �summation over repeated indices is assumed�.
The effective dielectric properties of the medium at the mac-
roscopic level are now contained in these quantities.

We emphasize that U�P� is the actual energy functional
unlike various other functionals proposed in the literature
�12–14,21� which yield the energy or free energy of the sys-
tem only at equilibrium. The equilibrium distribution of po-
larization �as well as induced charge distribution� can be ob-
tained by minimizing this energy functional with respect to
the polarization. For any given external charge distribution
and spatially varying dielectric susceptibilities one can ob-
tain the solution analytically or numerically.

We may truncate the series in Eq. �4� at an order suitable
for the problem at hand. For example, if the field is very
weak we can retain only the quadratic term which corre-
sponds to the case of linear dielectrics �isotropy is also as-
sumed for the sake of simplicity of presentation�:

U�P� = UC�P� +
1

2
� P�r� · P�r�

��r�
dr . �5�

Performing a functional variation with respect to the polar-
ization vector P, we arrive at an integro-differential equation
defining the equilibrium polarization

P�r�
��r�

+ �r� � f�r�� − � · P�r��
�r − r��

dr� = 0, �6�

which implies

P�r� = ��r�� �� f�r�� − � · P�r���
r − r�

�r − r��3
dr� = ��r�E�r� .

�7�

Thus the constitutive relation for a linear dielectric is ob-
tained as a result of functional minimization, with the expan-
sion coefficient ��r� turning out to be the dielectric suscep-
tibility. Inserting the equilibrium polarization Eq. �7� in Eq.
�5� results in the well-known expression for the total energy
of the system:

U =
1

2
� � f�r�

1

�r − r��
�� f�r�� − � · P�r���drdr�. �8�

Keeping two �or more� terms in series �4� introduces non-
linearity into the problem. The energy functional in this case
is given by

U�P� = UC�P� +
1

2
� P�r� · P�r�

��r�
dr +

1

2
� �P�r� · P�r��2

��r�
dr .

�9�

Performing a functional variation as above we now obtain

P�r� = ��r�E�r� − 2
��r�
��r�

�P�r� · P�r��P�r� . �10�

Given that the first term on the right-hand side is the domi-
nant one, we can obtain the solution via iteration. The first
approximation would be the same as the result for the linear
dielectrics. Substituting it back into Eq. �10�, we obtain at the
second order of approximation

P�r� = ��r�E�r� − 2
�4�r�
��r�

�E�r� · E�r��E�r� . �11�

One can continue with this to obtain a series of terms with
higher and higher powers of �E ·E�. This gives the desired
result for nonlinear dielectrics. We should mention once
more that this solution is true for weak fields so that the
higher order terms are successively weaker. To ensure this
condition we require ��r���3�r� to be true to any order of
approximation.

Let us now solve Eq. �7� for the case of linear dielectrics.
We simplify the analysis by choosing the �scalar� induced
density �i=−� ·P as our variable.

Using the relation

�r · � r − r�

�r − r��3
 = 4���r − r�� , �12�

we obtain from Eq. �7�

� · P�r� = ���r� ·� r − r�

�r − r��3
�� f�r�� − � · P�r���dr�

+ 4���r��� f�r� − � · P�r�� �13�

which implies
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��r��i�r� = − ���r� ·� r − r�

�r − r��3
�� f�r�� + �i�r���dr�

− 4���r�� f�r� , �14�

where �=1+4��. Equation �14� relates �i and � f. We may
rewrite this equation as

��r��t�r� = � f�r� − ���r� ·� r − r�

�r − r��3
�t�r��dr� �15�

or

�t�r� =
� f�r�
��r�

−
1

��r�
� ��r� ·� r − r�

�r − r��3
�t�r��dr�. �16�

This integral equation is the most general equation for total
charge density in linear dielectric media. Note that it is a
simple scalar equation for the induced charge �i, as opposed
to Eq. �7�, a vector equation for the polarization P whose
numerical solution also requires calculation of � ·P. Once
Eq. �7� is solved for �t, the polarization field is straightfor-
wardly obtained by substituting �t for � f −� ·P in Eq. �7�.
The advantages of switching to the induced charge persist
even in the case of nonlinear dielectrics.

For a system with uniform susceptibility, we obtain the
expected screening �t�r�=

� f�r�
� , so that �i�r�=−�1− 1

� �� f�r�.
The second term in Eq. �16� generates induced charges due
to nonuniformity of the dielectric medium. In the case of a
sharp boundary, the proper limit of this term gives rise to
surface charges. A planar interface example is described in
Appendix A.

We may rewrite Eq. �16� in the form of an operator equa-
tion

M�t � �I + C��t =
� f

�
, �17�

where the operators M, I, and C are defined as

�Mh��r� =� ���r − r�� +
���r�
��r�

·
r − r�

�r − r��3
h�r��dr�,

�18�

�Ih��r� =� ��r − r��h�r��dr�, �19�

�Ch��r� =� ���r�
��r�

·
r − r�

�r − r��3
h�r��dr�. �20�

We will frequently make use of the kernel of this operator
defined as

C�r,r�� =
���r�
��r�

·
r − r�

�r − r��3
. �21�

Note that C is completely determined by the geometry re-
gardless of the position of the source charge.

Using the formal inversion of I+C

�I + C�−1 = I − C + C2 − C3 + ¯ , �22�

one may obtain the total charge density

�t = �I − C + C2 − C3 + ¯�
� f

�
. �23�

If the off-diagonal part C�r ,r�� is small compared to the
diagonal delta function, series �22� converges quickly.

III. THREE CASE STUDIES

In this section we apply our energy minimization method
to three examples for which the exact solutions or the equa-
tions governing the exact solutions are known.

A. Planar interface

Let � depend only on one spatial variable z. For z	a,
�=�1, and for z
−a, �=�2. In the range −a�z�a, � is a
smooth function of z. Then

C�r,r�� =
�z�

��z�
ẑ ·

r − r�

�r − r��3
=

�z�

��z�
z − z�

�r − r��3
. �24�

Let us put a free point charge q at z=d	a so that � f�r�
=q��r−dẑ�. The total charge density �23� becomes

�t�r� =
q

�1
��r − dẑ� −

���z�
4���z�� z − z�

�r − r��3
��r� − dẑ�

q

�1
dr�

+
���z�

4���z�� z − z�

�r − r��3
���z��

4���z��
z� − z�

�r� − r��3

���r� − dẑ�
q

�1
dr�dr� + ¯ , �25�

where we have used �=1+4��.
In the a→0 limit, ���z�=��z���1−�2�, so

�t�r� =
q

�1
��r − dẑ� −

�1 − �2

4���z = 0�
��z�

�� z − z�

�r − r��3
��r� − dẑ�

q

�1
dr�

+ � �1 − �2

4���z = 0�	
2

��z�� z − z�

�r − r��3
��z��

�
z� − z�

�r� − r��3
��r� − dẑ�

q

�1
dr�dr� + ¯ . �26�

Note that each term from the second order on has a factor of
z��z� which is zero for any z. We finally obtain

�t�r� =
q

�1
��r − dẑ� −

�1 − �2

4���z = 0�
��z�

z − d

�r − dẑ�3
q

�1
. �27�

The surface charge density �12� depending on the radial vec-
tor � in the x-y plane,

���� =
q

4��1

2��1 − �2�
��1 + �2�

d

�� − dẑ�3
, �28�

is then obtained by setting ��z=0�= ��1+�2� /2. The validity
of using the average dielectric constant at the boundary is
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justified by the following argument. Let there be a surface
charge density � at the boundary. It creates an electric field
of magnitude 2�� directed along the normal vector to the
surface. Assuming that there are no free charges at the inter-
face, the boundary condition requires that �E�+2����1
= �E�−2����2, where E� is a normal component of electric
field produced by sources other than �. Therefore, ���1
+�2� /2= ��2−�1�E� /4�, in agreement with setting ��z=0�
= ��1+�2� /2. In Appendix A we present a thorough deriva-
tion of the a→0 limit, which arrives at the same conclusion
without invoking � functions. It is worthwhile to point out
here that the surface charge density arises entirely from the
term containing the gradient of the susceptibility. Our formu-
lation is straightforward in this respect when contrasted with
methods that first neglect the gradient of � and then intro-
duce a surface charge density by hand �18�.

B. Point charge outside of a sphere

Consider a ball of radius a1 centered at the origin and a
point charge q located at point L, � f�r�=q��r−L�. In this
subsection, we first obtain a set of equations for the general
case of spatially varying susceptibility, assuming only that it
changes in the radial direction. We then consider the case of
a sharp boundary and show that the simplified expressions
for the induced density coincide with the known results �22�.

Let the susceptibility change in the radial direction from
some value �1 inside the ball to another value �o outside.
Gradient � is then directed radially,

���r� =
��

�r
r̂ =

���r�
4�

r̂ , �29�

and we find for C�r ,r��,

C�r,r�� =
���r�

4���r�
r̂ ·

r − r�

�r − r��3
= −

���r�
4���r�

�r
1

�r − r��
.

�30�

Let us calculate

�C ·
� f

�

�r� =� dr�C�r,r��

� f�r��
��r��

= −
q

�o

���r�
4���r�

�r
1

�r − L�
.

�31�

Assuming, for simplicity, that the point charge is located far
enough from the ball, so that ���r��0 only where r
L �a
generalization which would lift this condition is straightfor-
ward�, we obtain the first-order contribution to the induced
charge density,

�i
�1��r� � �− C ·

� f

�

�r� = �

lm

�lm
�1��r�Ylm�r̂�Ylm

� �L̂� , �32�

where

�lm
�1��r� =

4�

2l + 1

q

�o

���r�
4���r�

lrl−1

Ll+1 �33�

and the expansion

1

�r1 − r2�
= �

l=0




�
m=−l

l
4�

2l + 1

r

l

r	
l+1Ylm�r̂
�Ylm

� �r̂	� ,

r
 � min�r1,r2�, r	 � max�r1,r2� �34�

was used. Note that any one of the spherical harmonics can
bear the complex conjugation sign.

The next order is obtained by applying the operator
�−C� to �i

�1�:

�i
�2��r� = �− C · �i

�1���r�

= �
lm

� dr��− C�r,r����lm

�1��r��Ylm�r�̂��Ylm
� �L̂� .

�35�

The angular integration in Eq. �35� can be performed analyti-
cally using Eqs. �30� and �34�:

� dr��− C�r,r����lm
�1��r��Ylm�r�̂�

=
���r�

4���r�
�r� dr�

1

�r − r��
�lm

�1��r��Ylm�r�̂�

=
���r�

4���r� �
l�m�

4�

2l� + 1
Yl�m��r̂�

���r�
0




dr�
r


l�

r	
l�+1

�lm
�1��r��� dr�̂Yl�m�

� �r�̂�Ylm�r�̂�
 .

�36�

The orthogonality relation for the spherical harmonics,

� dr�̂Yl�m�
� �r�̂�Ylm�r�̂� = �l�l�m�m, �37�

removes the sum, so we obtain

�i
�2��r� = �

lm

�lm
�2��r�Ylm�r̂�Ylm

� �L̂� ,

�lm
�2��r� =

4�

2l + 1

���r�
4���r��l�

r


 rl−1

�r��l−1�lm
�1��r��dr�

− �l + 1��
0

r �r��l+2

rl+2 �lm
�1��r��dr�
 . �38�

The same derivation leads us to a general recursive relation

�i
�n+1��r� = �

lm

�lm
�n+1��r�Ylm�r̂�Ylm

� �L̂� ,

�lm
�n+1��r� =

4�

2l + 1

���r�
4���r��l�

r


 rl−1

�r��l−1�lm
�n��r��dr�

− �l + 1��
0

r �r��l+2

rl+2 �lm
�n��r��dr�
 . �39�

Therefore, using Eq. �23�, we write the induced charge den-
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sity for the general case of a sphere with a radially varying
susceptibility as

�i�r� = �
lm

�lm�r�Ylm�r̂�Ylm
� �L̂� ,

�lm�r� = �
n=1




�lm
�n��r� , �40�

where �lm
�n��r� can be found via Eqs. �33� and �39�.

In the limit of a sharp boundary,

���r� = ��o − �1���r − a1� , �41�

we immediately find that

�lm
�1��r� =

q

�o

�o − �1

4���a1�
la1

l−1

Ll+1 ��r − a1� , �42�

while the higher order contributions,

�lm
�n+1��r� = �− 1

2
	n� 4�

2l + 1
	n+1� �o − �1

4���a1�	
n+1 la1

l−1

Ll+1 ��r − a1� ,

�43�

are found from Eq. �39� using the generalized definition of
the Dirac � function,

�
0




h�x���x� =
1

2
h�0� . �44�

Finally, we sum all the contributions to obtain the total
charge density:

�t�r� = ��I + �
n=1




�− C�n	� f

�

�r�

=
q

�o
��r − L� +

q

�o
� �o − �1

4���a1�	��r − a1��
lm



4�

2l + 1

la1
l−1

Ll+1

���
n=1


 �−
�o − �1

2��a1�
1

2l + 1
	n−1
Ylm�r̂�Ylm

� �L̂� . �45�

The sum in square brackets is a geometric series with com-
mon factor less than 1 for all l. Substituting ��a1�= ��o
+�1� /2 again, we derive

�t�r� =
q

�o
��r − L� +

q

�o
��o − �1���r − a1�

��
lm



l

��l + 1��o + l�1�
a1

l−1

Ll+1Ylm�r̂�Ylm
� �L̂� . �46�

For the case in which the point charge is inside the ball,
similar analysis leads to

�t�r� =
q

�1
��r − L� +

q

�1
��o − �1���r − a1�

��
lm



l + 1

��l + 1��o + l�1�
Ll

a1
l+2Ylm�r̂�Ylm

� �L̂�, L 
 a1.

�47�

Using the addition theorem for spherical harmonics,

Pl�r̂ · L̂� =
4�

2l + 1 �
m=−l

l

Ylm�r̂�Ylm
� �L̂� , �48�

and placing the point charge on the z axis, L= �0,0 ,L�, one
can further simplify the derived equations:

�t�r� =
q

�o
��r − Lẑ� +

q

�o

�o − �1

4�
��r − a1�

��
l

l�2l + 1�
��l + 1��o + l�1�

a1
l−1

Ll+1 Pl�cos ��, L 	 a1,

�49�

�t�r� =
q

�1
��r − Lẑ� −

q

�1

�o − �1

4�
��r − a1�

��
l

�l + 1��2l + 1�
��l + 1��o + l�1�

Ll

a1
l+2 Pl�cos ��, L 
 a1,

�50�

where � is the polar angle of r. These expressions provide
the correct results for the surface charge densities which can
be found in �22�.

C. Multiple charges and multiple spheres

We now generalize to the situation of many point charges
and many spheres. In this case only the exact equation, not
the exact solution, is known �9�. According to the linear su-
perposition principle, the induced surface charge on each
sphere may be computed by using one free charge at a time
and then adding up the contributions.

Let us consider N dielectric spheres of various radii and
dielectric constants immersed inside a dielectric medium of
dielectric constant �o. The location of sphere i is Ri, its ra-
dius is ai, and its interior has dielectric constant �i. No two
spheres are in contact with one another. There are K point
charges qi located at gi so that the free charge density reads
� f�r�=�i=1

K qi��r−gi�. We assume that the variation of sus-
ceptibility in the vicinity of each sphere is radial with respect
to the center of that sphere:

���r� = �
i=1

N
��

� r̃i

r̂̃i � �
i=1

N
���r̃i�
4�

r̂̃i. �51�

Here and throughout this section we use the tilde sign to
denote radius vectors centered at the corresponding spheres,
r=Ri+ r̃i.

From Eq. �16� we have

�t�r� =
� f�r�
��r�

− �
i

���r̃i�
4���r̃i�

� r̂̃i ·
r − r�

�r − r��3
�t�r��dr�

�
� f�r�
��r�

− �
i

�Ci�t��r� , �52�

where �iCi plays the role of C in Eq. �17�.
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Concentrating on the equation associated with a particular
sphere k, we decompose �t�r� as

�t�r� = �k�r� +
� f�r�
��r�

+ �
j�k

� j�r� , �53�

where � j�r� is the total charge density near the surface of
sphere j. Since we consider nonoverlapping spheres, C jCk
=0 for i�k. Therefore, when focusing on a spatial point near
sphere k, the only contribution to the overall charge density
is �k�r�, so �t�r�=�k�r� for r sufficiently close to sphere k.
Then in the vicinity of sphere k the charge density becomes

�k�r� = −
���r̃k�

4���r̃k�
� r̂̃k ·

r − r�

�r − r��3

��� f�r��
��r��

+ �k�r�� + �
j�k

� j�r��
 , �54�

which may be expressed symbolically as

�I + Ck��k = − Ck�� f

�
+ �

j�k

� j	 �55�

with

Ck�r,r�� =
���r̃k�

4���r̃k�
r̂̃k ·

r − r�

�r − r��3
. �56�

This implies a symbolic solution for �k,

�k = − �I − Ck + Ck
2 − Ck

3 + ¯�Ck�� f

�
+ �

j�k

� j	 . �57�

Notice that the solution for the series acting on the free
charges part will be essentially the same as that for the one
sphere problem dealt with in the previous subsection. Let us
consider Ck� j�k,

Ck� j =
���r̃k�

4���r̃k�
r̂̃k ·� r − r�

�r − r��3
� j�r��dr�. �58�

We switch to vectors centered on the corresponding spheres
so that the final expression is in terms of the local polar angle
of r̃k, which allows easier manipulation later. In this notation,

Ck� j =
���r̃k�

4���r̃k�
r̂k ·� r̃k − �r̃ j� − L j→k�

�r̃k − �r̃ j� − L j→k��3
� j�r̃ j��dr̃ j�

= −
���r̃k�

4���r̃k�
�rk� 1

�r̃k − �r̃ j� − L j→k��
� j�r̃ j��dr̃ j�, �59�

where L j→k�Rk−R j =−Lk→j represents the vector pointing
from the center of sphere j to that of sphere k. Using expan-
sion �34�, we obtain

Ck� j�r� = −
���r̃k�

4���r̃k�
�
lm

4�l

2l + 1
�r̃k�l−1Ylm�r̂̃k�

�� Ylm
� � r̃ j� − L j→k

�r̃ j� − L j→k�
	

�r̃ j� − L j→k�l+1 � j�r̃ j��dr̃ j�. �60�

The angular integral in the above equation was solved by
Yu �23� and employed in �9� where � j ���r̃ j −aj�. The pro-
cess for calculating Ck

n� j is not affected by the detailed result
of the integration. For now, it is sufficient to point out that
the integral gives rise to a geometrical factor with some fac-
torials multiplied by the multipole moment Qlm

j of the sur-
face charge distribution of sphere j. Denoting the integral by
�lm

j �aj ,L j→k�,

�lm
j �aj,L j→k� � � Ylm

� � r̃ j� − L j→k

�r̃ j� − L j→k�
	

�r̃ j� − L j→k�l+1 � j�r̃ j��dr̃ j�, �61�

we may then write

Ck� j�r� = −
���r̃k�

4���r̃k�
�
lm

4�

2l + 1
l�lm

j �aj,L j→k�r̃k
l−1Ylm�r̂̃k� .

�62�

For the case of sharp boundaries between the spheres and the
external medium, one then obtains

Ck� j�r� = −
�o − �k

4���ak�
��r̃k − ak�

��
lm

4�

2l + 1
�lak

l−1�lm
j �aj,L j→k��Ylm�r̂̃k� . �63�

Applying the Ck operator once again and performing the
integration in the radial direction, we find

Ck
2� j�r� = − � �o − �k

4���ak�
	2��r̃k − ak�

2
� dr̂̃k�

�2 − 2r̂̃k · r̂̃k��
1/2

��
lm

4�

2l + 1
�lak

l−1�lm
j �aj,L j→k��Ylm�r̂̃k�� . �64�

After performing the angular integration, Ck
2� j�r� becomes

Ck
2� j�r� = − � �o − �k

4���ak�
	��r̃k − ak�

��
lm
� �o − �k

2��ak��2l + 1�	
�

4�

2l + 1
�lak

l−1�lm
j �aj,L j→k��Ylm�r̂̃k� . �65�

It is easy to see that this process continues and one ends up
having

Ck
n� j�r� = − � �o − �k

4���ak�
	��r̃k − ak�

��
lm
� �o − �k

2��ak��2l + 1�	
n−1

�
4�

2l + 1
�lak

l−1�lm
j �aj,L j→k��Ylm�r̂̃k� �66�

and therefore
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�
n=1




�− Ck�n� j = − � �o − �k

4���ak�
	��r̃k − ak��

lm
��

n=1




�− 1�n� �o − �k

2��ak��2l + 1�	
n−1
 4�

2l + 1
�lak

l−1�lm
j �aj,L j→k��Ylm�r̂̃k�

= − � �o − �k

4�
	��r̃k − ak��

lm
� �2l + 1�

�l + 1��o + l�k

 4�

2l + 1
�lak

l−1�lm
j �aj,L j→k��Ylm�r̂̃k� , �67�

where ��ak�= ��o+�k� /2 is used. We are now in a position to write down the full solution using Eqs. �46�, �47�, and �67�.
Defining Ik��i�ak	 �gi−Rk�� and Ok��i�ak
 �gi−Rk�� to be the sets of charges inside and outside sphere k, respectively, we
find

�k�r̃k� = − �
Ik

qi

�k
��o − �k���r̃k − ak��

lm

�l + 1�
��l + 1��o + l�k�

�gi − Rk�l

ak
l+2 Ylm

� � gi − Rk

�gi − Rk�
	Ylm�r̂̃k�

+ �
Ok

qi

��gi�
��o − �k���r̃k − ak��

lm

l

��l + 1��o + l�k�
ak

l−1

�gi − Rk�l+1Ylm
� � gi − Rk

�gi − Rk�
	Ylm�r̂̃k�

− �
j�k

� �o − �k

4�
	��r̃k − ak��

lm
� �2l + 1�

�l + 1��o + l�k

 4�

2l + 1
�lak

l−1�lm
j �aj,L j→k��Ylm�r̂̃k� �68�

which, with appropriate rotations and taking a single point
charge at the center of each sphere, is equivalent to Eq. �11�
in �9�.

IV. NUMERICAL CASE STUDY

In this section we present results of numerical computa-
tions comparing the force between two charged identical
spheres with sharp boundaries to the force between two
charged identical spheres with smeared boundaries. For brev-
ity, the spheres with smeared boundaries will be called
“fuzzy spheres” and the spheres with sharp boundaries will
be called “rigid spheres.” The dielectric constant �1=4 inside
the spheres and �o=80 outside. For the fuzzy spheres there is
an interface region r0−�r
r
r0+�r in which the dielectric
constant changes smoothly from �1 to �o in the radial direc-
tion �with respect to the center of the corresponding sphere�.

The simplest polynomial smoothly connecting �1 and �o,
i.e., satisfying the conditions ��r0−�r�=�1, ��r0+�r�=�o,
���r0−�r�=���r0+�r�=0, is cubic, so that the dielectric con-
stant can be defined around each sphere as

��r� = �1, r 
 r0 − �r ,

��r� = � �r − r0�3

�r3 − 3
r − r0

�r

 �1 − �o

4

+
�1 + �o

2
, r0 − �r � r � r0 + �r ,

��r� = �o, r 	 r0 + �r . �69�

With a fifth-order polynomial one can request additionally
that ��r0+�rH�=�H and ���r0+�rH�=0. Letting �H=70 and
�rH=0.5�r yields a nonmonotonic profile, which may be
used to simulate the hydration layer phenomenon in biomac-
romolecules and clusters �see Fig. 1�.

Let there be point charges q1 and q2 at the centers of
spheres 1 and 2, respectively. The induced charge density is
found for rigid spheres as the self-consistent solution of Eq.
�68� for �1�r̃1� and �2�r̃2�. Of course, Eq. �68� simplifies dra-
matically in the case of two spheres and two free charges.
For fuzzy spheres, one has to use a continuous version of Eq.
�68� in which summation over n in Eq. �67� is carried out
numerically with the nth-order terms Eq. �66� calculated re-
cursively via numerical integration, analogously to the
method for a point charge outside a sphere; see Eqs. �39�,
�43�, and �45�. Notice that the l=0 components of the in-
duced densities can only be produced by the free charge
inside the corresponding sphere. Notice also that the free
charges in the centers of the spheres induce only l=0, i.e.,
spherically symmetric, components. For these reasons it is
convenient to distinguish the l=0 and l�0 components of
the induced charge density.

In accordance with Eq. �8�, the total energy of the system
consists of the following terms:
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FIG. 1. �Color online� Radial dependence of �a� the dielectric
constant ��r /a� and �b� ���r /a� / �4���r /a�� for a monotonic step
�red broken line, Eq. �69�� and for a nonmonotonic step simulating
a hydration layer �blue solid line�. The dielectric constant changes
smoothly from �1=4 inside the sphere to �o=80 outside. The effec-
tive radii r0=1.13a and r0=1.17a, respectively, are chosen so that
the Born solvation energy in each case is equal to that in the case of
a sharp boundary at radius a �shown with dotted line�. The half
width of the steps �r=0.2a.
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�i� interaction between the point charges �screened by �1�,

q1q2

�1L
, �70�

where L is the length of the vector L1→2=−L2→1, connecting
the centers of the two spheres,

�iia� interaction between each point charge and the l=0
component of the induced charge in the interface region of
the other sphere,

1

2
�q1� �2�r̃2��l=0

�r̃2 + L1→2�
dr̃2 + q2� �1�r̃1��l=0

�r̃1 + L2→1�
dr̃1	 , �71�

�iib� interaction between each point charge and the l�0
components of the induced charge in the interface region of
the other sphere,

1

2
�q1� �2�r̃2��l�0

�r̃2 + L1→2�
dr̃2 + q2� �1�r̃1��l�0

�r̃1 + L2→1�
dr̃1	 , �72�

�iiia� interaction between each point charge and the l=0
component of the induced charge in the interface region of
the same sphere,

1

2
�q1� �1�r̃1��l=0

r̃1

dr̃1 + q2� �2�r̃2��l=0

r̃2

dr̃2	 , �73�

�iiib� interaction between each point charge and the l�0
components of the induced charge in the interface region of
the same sphere,

1

2
�q1� �1�r̃1��l�0

r̃1

dr̃1 + q2� �2�r̃2��l�0

r̃2

dr̃2	 . �74�

The sum of terms �i� and �iia� is equal to the energy of
interaction of two point charges in dielectric medium �o,

q1q2

�oL
. �75�

This energy is the same for rigid and fuzzy spheres. In con-
trast, terms �iib� are different for rigid and fuzzy spheres and
are the main source of differences in the forces in these two
situations. Finally, terms �iiib� are zero for the point charges
located at the centers of the spheres, while terms �iiia� are the
Born solvation energy in this case.

Born solvation energies are quite different for rigid and
fuzzy spheres, since for fuzzy spheres the induced charge
density tends to accumulate near the inner boundary of the
interface region. Indeed, the operator C is proportional to
���r� /��r� and ��r0−�r�=�1���r0+�r�=�o. This asymmetry
is present at each order n and is preserved after the summa-
tion over n. Radial dependences of the l=0 components of
the induced densities are illustrated in Fig. 2. On the other
hand, fuzzy and rigid spheres model the same physical ob-
jects, so it is reasonable to assume that whatever profile of
the dielectric constant is chosen, the Born solvation energy
should remain the same. For this reason, we adjust the effec-
tive radius r0 for each profile of the dielectric constant so that
the Born solvation energy is equal to that of a rigid sphere of
radius a, see Fig. 1.

In Fig. 3 we present the dependence of the interaction
energy on distance for a pair of rigid spheres and for two
pairs of fuzzy spheres, with monotonic and nonmonotonic
behavior of the dielectric function in the interface region,
respectively. The energies are normalized to the energy of
interaction of point charges �75�. The forces between two
fuzzy spheres and between two rigid spheres are shown in
Fig. 4. The forces are normalized by the interaction force
between two point charges. We note that the seemingly
weaker effect for the fuzzy spheres with nonmonotonic ��r�
dependence is due to the fact that ��r� changes faster near the
inner surface of the interface region to make room for the
feature representing the hydration layer. This makes the
fuzzy spheres with nonmonotonic ��r� dependence effec-
tively more similar to rigid spheres for fixed �r �compare the
charge density distributions in Fig. 2�.

For very thin interface regions ��r→0�, the forces be-
tween two rigid and two fuzzy spheres are equal, as ex-
pected. For fuzzy spheres with moderate interface region
widths, the repulsion increases with the width. However, this
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FIG. 2. �Color online� Radial dependence of the induced electric
density ��r /a� �l=0 for the monotonic �red broken line� and non-
monotonic �blue solid line� steps shown in Fig. 1. The density is
normalized by the value of the point charge in the center of the
sphere. The inset magnifies a small, oscillatory feature associated
with the nonmonotonic step.
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FIG. 3. �Color online� Energy of interaction between two
spheres with sharp �thin line� and smeared �thick lines� boundaries.
The red broken thick line corresponds to the case of the monotonic
radial dependence of the dielectric constant, while the blue solid
thick line corresponds to the nonmonotonic radial dependence
shown in Fig. 1. Free charges of the same sign are located at the
centers of the spheres. The energies are normalized by the Coulomb
energy of these point charges in the uniform dielectric medium �o.
The vertical dotted lines indicate the contact points.
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trend quickly saturates �Fig. 5�. Qualitatively, this saturation
can be explained by two opposing effects. The increase in the
interface width increases the size of the spheres thereby
strengthening the repulsion. On the other hand, the induced
charge density tends to concentrate near the inner surface of
the interface which remains around r=a to maintain constant
Born solvation energy. Therefore, the bulk of the induced
charge on one sphere becomes farther from that of the other
sphere, hence weakening the repulsion.

In Fig. 6 we demonstrate the number of terms nmax needed
to invert operator C, i.e., to achieve convergence of the nu-
merical summation over n in Eq. �67�. We consider the
worst-case scenario, where two fuzzy spheres with the
monotonic radial dependence of the dielectric constant are in
contact. The blue squares correspond to converging terms
�iib� �the only ones in our numerical case study which are
different for fuzzy and rigid spheres� to precision 10−6. How-
ever, the quantity of interest in practical computations is the
full energy of interaction �and hence the force�. Also, since
terms �iib� are smaller than the other nonzero components of
the total energy, the actual number of terms to be calculated
to achieve 10−6 precision is smaller �see red circles in Fig. 6�.
For �r /a→0, the number of terms needed increases rapidly.

This problem, however, can be dealt with by decomposing
the operator M in Eq. �18� differently such that the results
from the sharp boundary case �9� are used to replace the
identity operator I. This technical development, useful for
computational purposes, is beyond the scope of the current
paper which lays down the theoretical framework.

We finally note that if the point charges are located away
from the centers of the spheres, the terms �iiib� depend on the
relative position and orientation of the spheres. In this case
one can still define the Born solvation energies as the sum of
terms �iiia� and �iiib� at large separations, but the terms �iiib�
would contribute to the difference of interaction forces/
energies between the rigid and fuzzy spheres.

V. CONCLUSIONS

We have presented an energy minimization formulation of
electrostatics that allows computation of the electrostatic en-
ergy and forces to any desired accuracy in a system with
arbitrary dielectric properties. We have derived an integral
equation for the scalar charge density from an energy func-
tional of the polarization vector field. This energy functional
represents the true energy of the system even in nonequilib-
rium states. Arbitrary accuracy is achieved by solving the
integral equation for the charge density via a series expan-
sion in terms of the equation’s kernel, which depends only on
the geometry of the dielectrics. The streamlined formalism
operates with volume charge distributions only, not resorting
to introducing surface charges by hand as is done in various
other studies of electrostatics via energy minimization.
Therefore, it can be applied to arbitrary spatial variations of
the dielectric susceptibility. The simplicity of application of
the formalism to real problems has been shown with three
analytic examples and with a numerical case study. We found
that finite boundary widths introduce a measurable correction
to the interaction forces as compared to the sharp boundary
case. For two charged identical spheres the correction is
about 10%.

The formalism has various potential applications in mod-
eling electrostatic interactions between solvated molecules: it
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FIG. 4. �Color online� Interaction forces between two spheres
with sharp and smeared boundaries. The line identifications are the
same as in Fig. 3.
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FIG. 5. �Color online� Maximum difference in interaction forces
between two spheres with smeared and two spheres with sharp
boundaries, occurring at the contact point 2�r0+�r�, as a function of
half width of the interface region �r. The forces are normalized by
the interaction force between two spheres with sharp boundaries.
The red broken line corresponds to the case of the monotonic radial
dependence of the dielectric constant, while the blue solid line cor-
responds to the nonmonotonic radial dependence shown in Fig. 1.
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FIG. 6. �Color online� The number of terms needed in numerical
summation �67� to achieve convergence in the worst-case scenario
�two touching spheres� as a function of half width of the interface
region �r. The blue squares correspond to convergence of terms
�iib� to precision 10−6, while the blue squares correspond to con-
vergence of the full interaction energy to the same precision.
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enables one to go beyond the widely used simplification of
atoms and molecules as dielectric balls immersed in a dielec-
tric solvent, as was first suggested by Born in the early 1920s
�24�. For example, the description of an aqueous solvent as a
continuous and homogeneous dielectric medium fails to ac-
count for the strong dielectric response of water molecules
around charges. Normally, charged ions and surfaces give
rise to hydration layers by orienting and displacing surround-
ing water molecules. These hydration phenomena are very
important in many biological processes such as protein fold-
ing, protein crystallization, and interactions between charged
biopolymers inside the cell. With our formalism one can now
consider arbitrary structures for such hydration layers and
arrive at a possibly more realistic and reliable analysis of the
molecular mechanisms in biochemical interactions.

Applied to MD simulations, this formulation is still an
implicit solvent scheme, and the position-dependent suscep-
tibility is therefore a model parameter �indeed, the only one�.
To obtain an estimate of the macroscopic dielectric suscepti-
bility at the molecular level or at the intermolecular bound-
aries one has to explore physics at the atomic level and in-
troduce some coarse graining. Given that the dielectric
susceptibility is related to the charge fluctuations as a re-
sponse to external perturbations, one can estimate suscepti-
bilities through the study of linear/nonlinear response. For
example, the dielectric susceptibility can be related to the
correlations of the net system dipole moment and local po-
larization density �25�. A fully quantum mechanical treat-
ment of solvation of biological systems might be hindered by
limits of numerical accuracy �26� and will demand much
more computational power than currently available. We be-
lieve that quantum mechanics, in particular, density func-
tional theory, can in principle be used to calculate the local
dielectric susceptibility, which in turn should be used as in-
put for the implicit solvent methods, such as the one de-
scribed in this paper.
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APPENDIX A: SHARP BOUNDARY LIMIT
IN THE PLANAR INTERFACE PROBLEM

Let us demonstrate how a rigorous limiting procedure ap-
plied to Eq. �26� produces the correct expression for the sur-
face charge density in the case of the sharp planar interface.
The surface charge is found by integrating the charge density
over the range −a�z�a in which � changes from �2 to �1,
and then taking the limit a→0.

We return to Eq. �25� and, making use of the azimuthal
symmetry of the problem, expand the kernels in terms of
Bessel functions Jm �12�,

1

�r − r��
= �

m=−



 �
0




eim��−���Jm�k��Jm�k���e−k�z	−z
�dk ,

�A1�

1

�r − dẑ�
= �

0




J0�k��e−k�d−z�dk . �A2�

Here the position vectors r and r� are represented via the
polar vectors � and �� in the z=0 plane, r=�+zẑ and r�
=��+z�ẑ. The polar vectors are in turn defined through their
lengths �=�x2+y2 and ��=�x�2+y�2 and their azimuthal
angles � and ��. The notation z	 �z
� is used for the greater
�lesser� of the corresponding z and z�.

We now treat each of the terms in the expansion of Eq.
�25� separately. The first term is the screened point charge.
All other terms form the induced charge density at the inter-
facial region. The first contribution to the induced charge
density is given by

�i
�1��r� = −

q

�1

���z�
4���z�

z − d

�r − dẑ�3
. �A3�

The corresponding surface charge density is

�i
�1���� = −

q

�1
lim
a→0

�
−a

a ���z�
4���z�� − d

�� − dẑ�3
+ O�z�
dz .

�A4�

All the O�z� terms vanish since for any bounded function
h�z�,

lim
a→0

�
−a

a

znh�z�dz � lim
a→0

an�
−a

a

�h�z��dz = 0, ∀ n 	 0.

�A5�

Thus,

�i
�1���� =

q

4��1

d

�� − dẑ�3
�f1 − f2� . �A6�

Here we have used the notations f�z�=ln���z��, f1= f�a�
=ln��1�, and f2= f�−a�=ln��2�.

We can similarly evaluate all the other contributions to the
induced surface charge density. The second contribution to
the induced charge density is

�i
�2��r� =

q

�1

���z�
4���z�� z − z�

�r − r��3
���z��

4���z��
z� − d

�r� − dẑ�3
��d��d��dz�.

�A7�

Using Eqs. �A1� and �A2�, and the completeness relation for
Bessel functions �12�,

�
0




Jm�k��Jm�k����d� =
1

k
��k − k�� , �A8�

we obtain, after integration over �� and ��,
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�i
�2��r� =

q

�1

���z�
4���z�

d

dz
� ���z��

4���z��

��
0




J0�k��e−k�d−z��e−k�z	−z
�2�dkdz�

=
q

�1

���z�
4���z�

1

2
�

0




kdke−k�d−z�J0�k��

���
z

a ���z��
��z��

dz� − �
−a

z ���z��
��z��

e−2k�z−z��dz�
 .

�A9�

The corresponding surface charge density is then

�i
�2� =

q

�1
lim
a→0

�
−a

a

dz
���z�

4���z�
1

2
�

0




kdke−k�d−z�J0�k��

���
z

a ���z��
��z��

dz� − �
−a

z ���z��
��z��

e−2k�z−z��dz�
 .

�A10�

Applying to Eq. �A10� the same argument used in deriving
Eq. �A6�,

�i
�2� =

q

�1
�

0




kdke−kdJ0�k��lim
a→0
�

−a

a

dz
���z�

4���z�

�
1

2��z

a ���z��
��z��

dz� − �
−a

z ���z��
��z��

dz�
 . �A11�

The integral over k is evaluated using Eq. �A2� as

� kJ0�k��e−kddk =
d

dz
� J0�k��e−k�d−z�dk�z=0

= �d
dz

1

�r − dẑ�
�

z=0

=
d

�� − dẑ�3
. �A12�

Then

�i
�2� =

q

�1

d

�� − dẑ�3
lim
a→0

�
−a

a

dz
���z�

4���z��1

2
�f1 + f2� − f�z�
 .

�A13�

Finally, we obtain that �i
�2�=0,

�i
�2� =

q

4��1

d

�� − dẑ�3
�

f2

f1

df�1

2
�f1 + f2� − f�z�
 = 0.

�A14�

Analogously, the expressions for the induced surface
charge densities up to the fifth order are found to be

�i
�1� =

q

4��1

d

�� − dẑ�3
�f1 − f2� ,

�i
�2� = 0,

�i
�3� =

q

4��1

d

�� − dẑ�3
− 1

12
�f1 − f2�3,

�i
�4� = 0,

�i
�5� =

q

4��1

d

�� − dẑ�3
1

120
�f1 − f2�5. �A15�

In general, the surface charge density is of the form

�i
�n��z� = −

q

�1
lim
a→0

�
−a

a

dz
���z�

4���z�
z − d

�r − dẑ�3

�
1

2
�z

a ���z��
��z��

g�n−1��f�z���dz�

− �
−a

z ���z��
��z��

g�n−1��f�z���dz��
= −

q

�1
lim
a→0

1

2
�

−a

a

dz
���z�

4���z�
z − d

�r − dẑ�3
g�n��f�z��

=
q

4��1

d

�� − dẑ�3
�

f2

f1

g�n��f�df . �A16�

The functions g�n��f�z�� up to n=5 are

g�1��f�z�� = 1,

g�2��f�z�� = − f�z� +
1

2
�f1 + f2� ,

g�3��f�z�� =
f2�z�

2
−

1

2
�f1 + f2�f�z� +

1

2
f1f2,

g�4��f�z�� = −
f3�z�

6
+

1

4
�f1 + f2�f2�z� −

1

2
f1f2f�z�

−
1

24
�f1 + f2��f1

2 − 4f1f2 + f2
2� ,

g�5��f�z�� =
f4�z�
24

−
1

12
�f1 + f2�f3�z� +

1

4
f1f2f2�z�

+
1

24
�f1 + f2��f1

2 − 4f1f2 + f2
2�f�z�

−
1

24
f1f2�f1

2 − 3f1f2 + f2
2� . �A17�

We will show by induction that g�n��f� is
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g�n��f� = �− 1�n−1 1

�n − 1�!
fn−1 +

1

2
�C1g�n−1��f� −

1

2!
C2g�n−2��f� +

1

3!
C3g�n−3��f� + ¯ + �− 1�n−2 1

�n − 1�!
Cn−1g�1��f�


=
�− 1�n−1fn−1

�n − 1�!
+

1

2 �
m=1

n−1
�− 1�n−m−1Cn−m

�n − m�!
g�m��f� , �A18�

where the coefficients Cn= f1
n+ f2

n. First, Eq. �A18� can be explicitly verified up to n=5 using Eq. �A17�. Second, we show that
if this expression holds for some integer n, then it also holds for n+1. From Eq. �A16� we can write

g�n+1��f�z�� =
1

2��f�z�

f1

g�n��f�df − �
f2

f�z�

g�n��f�df

=

�− 1�n−1

�n − 1�!
1

2��f�z�

f1

fn−1df − �
f2

f�z�

fn−1df
 +
1

2 �
m=1

n−1
�− 1�n−m−1Cn−m

�n − m�!
1

2��f�z�

f1

g�m��f�df − �
f2

f�z�

g�m��f�df

=

�− 1�nfn

n!
+

1

2

�− 1�n−1�f1
n + f2

n�
n!

+
1

2 �
m=1

n−1
�− 1�n−m−1Cn−m

�n − m�!
g�m+1��f�

=
�− 1��n+1�−1f �n+1�−1

��n + 1� − 1�!
+

1

2 �
m=1

�n+1�−1 �− 1��n+1�−m−1C�n+1�−m

��n + 1� − m�!
g�m��f� . �A19�

We thus proved that g�n��f� is given by Eq. �A18� for any
given integer n�2 with g�1��f�=1.

We now need to find the integral ��i
�n� in Eq. �A16�. We

will show by induction that

�
f2

f1

g�n��f� = − 2
En

n!
un, �A20�

where u= f1− f2 and En are the coefficients of the expansion

2

eu + 1
= �

n=0



En

n!
un. �A21�

It is easy to see that E0=1.
The base for the mathematical induction for Eq. �A20� is

easily established for the first few terms using Eq. �A17�.
Now we verify that Eq. �A20� holds true for n+1 if it is true
for n. To do so, we integrate both sides of Eq. �A19� and use
the assumption Eq. �A20� to obtain

�
f2

f1

g�n+1��f� = −
�− 1��n+1�

�n + 1�!
�f1

n+1 − f2
n+1�

+ �
m=1

n
�− 1�n+1−m

�n + 1 − m� ! m!
Cn+1−mEmum

= − 2
�− f1�n+1

�n + 1�!
+ �

m=0

n
�− f1�n+1−m

�n + 1 − m�!
Emum

m!

+ �
m=0

n
�− f2�n+1−m

�n + 1 − m�!
Emum

m!

= − 2
�− f1�n+1

�n + 1�!
+ �

m=0

n+1 � �− f1�n+1−m

�n + 1 − m�!

+
�− f2�n+1−m

�n + 1 − m�!
Emum

m!
− 2

En+1un+1

�n + 1�!
.

�A22�

In the second step we have included an m=0 term in the
summation and in the third step we have added and sub-
tracted an m=n+1 term. It can be easily verified that the
right-hand side of Eq. �A22� is the sn+1 term of the following
expression:

− 2e−f1s + �e−f1s + e−f2s − 2�
2

eus + 1

= − 2
2

eus + 1
= − 2�

m=0



Emum

m!
sm.

This completes the proof.
Summing over all the terms, we have

�
n=1


 �
f2

f1

g�n��f� = − 2�
n=0



Enun

n!
+ 2E0

= 2�1 −
2

eu + 1
	 =

2��1 − �2�
�1 + �2

. �A23�

We note that the series converges for �u�=ln �o /�1
�. This
means that if one medium is water ��o�80� then for the
other material the dielectric constant �1	�oe−��3.47. How-
ever, using techniques similar to Borel summation, one can
show that the series can still be summed to the correct final
formula for larger values of �u�.

Finally the induced surface charge density becomes
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�i��� =
q

4��1

2��1 − �2�
�1 + �2

d

�� − dẑ�3
, �A24�

which is identical to Eq. �28�. Thus, we have rigorously jus-
tified using the average dielectric constant ��1+�2� /2 at the
boundary.

APPENDIX B: EVALUATION OF � FOR SPHERES
WITH SHARP BOUNDARIES

To compute �lm
j �aj ,L j→k�, defined as

�lm
j �aj,L j→k� � � Ylm

� � r̃ j − L j→k

�r̃ j − L j→k�
	

�r̃ j − L j→k�l+1 � j�r̃ j�dr̃ j , �B1�

for the case of spheres with sharp boundaries, expand the
charge density on sphere j as

� j�r̃ j� = ��r̃ j − aj� �
l�,m�

�4��l�m�
j Yl�m��r̂̃ j� �B2�

to find

�lm
j �aj,L j→k� = �

l�,m�

�4��l�m�
j

�� Ylm
� � r̃ j − L j→k

�r̃ j − L j→k�
	Yl�m��r̂̃ j�

Lj→k
l+1 �1 + t2 − 2t cos �̃ j��l+1�/2

���r̃ j − aj�dr̃ j , �B3�

where use has been made of the geometrical fact that �r̃ j

−L j→k�=Lj→k
�1+ t2−2t cos �̃ j with t� r̃ j /Lj→k. The delta

function renders the radial integration trivial:

�lm
j �aj,L j→k� = �

l�,m�

�4�aj
2�l�m�

j

�� Ylm
� ��,��Yl�m���̃ j,�̃ j�

Lj→k
l+1 �1 + t2 − 2t cos �̃ j��l+1�/2

�d�cos �̃ j�d�̃ j , �B4�

where � and � are the polar variables of �r̃ j −L j→k� / �r̃ j
−L j→k� and t=aj /Lj→k now. All of the angular variables are
measured with respect to a coordinate system whose z axis is
parallel to L j→k. The angles � and � must be expressed as

functions of the integration variables �̃ j and �̃ j:

cos � =
�t cos �̃ j − 1�

�1 + t2 − 2t cos �̃ j

, �B5�

� = �̃ j . �B6�

Since the definition of the spherical harmonics is

Ylm��,�� =��2l + 1��l − m�!
4��l + m�!

Plm�cos ��eim�, �B7�

� is

�lm
j �aj,L j→k� = �

l�,m�

�4�aj
2�l�m�

j

Lj→k
l+1 � �2l + 1��l − m� ! �2l� + 1��l� − m��!

4��l + m� ! 4��l� + m��!

1/2

��
Plm� �t cos �̃ j − 1�

�1 + t2 − 2t cos �̃ j

	Pl�m��cos �̃ j�

�1 + t2 − 2t cos �̃ j��l+1�/2
d�cos �̃ j�d�̃ j . �B8�

The integration over �̃ j produces 2��mm�. The integration over cos �̃ j is the integral calculated by Yu �23�. The final expression
for � is

�lm
j �aj,L j→k� = �

l�

Ql�m
j tl��− 1�l−m�l + l�� ! �2l + 1

Lj→k
l+1 �4��l + m� ! �l� + m� ! �l − m� ! �l� − m� ! �2l� + 1��1/2 , �B9�

where Ql�m
j �4�aj

2�l�m
j .
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